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ABSTRACT: The properties of metal−organic frame-
works (MOFs) can be tuned by postsynthetic modification
(PSM) to introduce specific functionalities after their
synthesis. Typically, PSM is carried out on pendant
functional groups or through metal/ligand exchange,
preserving the structure of the MOF. We report herein
the bromination of integral alkyne units in a pair of Zr4+

and Hf4+ MOFs, which proceeds stereoselectively in a
single-crystal to single-crystal manner. The chemical and
mechanical changes in the MOFs are extensively
characterized, including the crystal structures of the
postsynthetically brominated materials, which show a
mechanical contraction of up to 3.7% in volume. The
combination of stability and chemical reactivity in these
MOFs leads to the possibility of tuning mechanical
properties by chemical transformation while also opening
up new routes to internal pore functionalization.

Metal−organic frameworks (MOFs),1 porous coordination
networks of metal clusters connected by organic linkers,

have received widespread interest for use in a number of
applications including, but not limited to, gas capture and
sequestration,2 catalysis,3 and drug delivery.4 Drawbacks
associated with MOFs include their relatively low chemical and
thermal stabilities,5 although recent findings suggest that Zr4+

linked MOFs,6 in particular those where Zr6O4(OH)4 clusters
link dicarboxylate struts into the UiO-66 isoreticular series,6d

exhibit dramatically improved chemical7 and mechanical8

stabilities. Postsynthetic modification (PSM), where the
preformed MOF undergoes further chemical transformation(s)
while retaining its crystalline structure, allows incorporation of
additional functionality.9 PSM of Zr-MOFs has typically been
achieved through ligand metalation,10 metal ion/ligand
exchange,10c,11 and/or direct chemical transformations on the
MOF itself.12 Postsynthetic bromination of MOFs has been
demonstrated as an attractive route for functionalization but, like
the majority of covalent modifications, occurs mainly on pendant
moieties.13 There are only a limited number of examples where
PSM has been carried out on integral ligand sites that result in a
change in length and/or geometry of the linker,14,15 and as far as
we are aware, none in a single-crystal to single-crystal (SCSC)
fashion to allow full structural characterization.16 Herein, we
describe the synthesis and stereoselective postsynthetic bromi-
nation of two MOFs, [Zr6O4(OH)4(edb)6]n (1) and
[Hf6O4(OH)4(edb)6]n (2), which are isostructural and contain

4,4′-ethynylenedibenzoate (edb2−) organic linking units (Figure
1). The combined chemical and mechanical stabilities of the

MOFs facilitate their quantitative, stereoselective bromination in
a SCSC manner, resulting in incorporation of new functionality
and permitting crystallographic characterization of the significant
mechanical contraction, which the transformation induces.
The parent MOFs, (1)17 and (2), were synthesized by an

amino acid modulated protocol, with 4−5 equiv of L-proline and
one of HCl added to a solvothermal synthesis of 4,4′-
ethynylenedibenzoic acid (edb-H2)

18 and MCl4 (M = Zr, Hf)
in N,N′-dimethylformamide (DMF), yielding single crystals of
both MOFs (Figure 1b). Typically, large equivalents of benzoic
or acetic acid have been used to promote crystallization of Zr
MOFs,19 but we have found amino acids to be highly efficient
modulators in low concentrations (see Supporting Information
(SI), Section S2). Incorporation of alkyne functionalities into
MOFs has been highlighted as a route to achieve stimuli
responsive materials,20 and both structures show large atomic
displacement parameters for the carbon atoms at the center of
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Figure 1. (a) Schematic of postsynthetic bromination, transforming the
bound edb2− ligand to edb-Br2

2−. (b) Packing diagram derived from our
determination of the crystal structure of (1), which is isostructural with
(2).
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the edb2− ligands, suggesting the unsaturated triple bond imparts
the MOFs with a degree of flexibility6e as well as potential
reactivity. The well-documented stability7,8 of UiO type MOFs
led us to the realization that bromination of edb2− to edb-Br2

2−

should be possible within the MOF cavity.
Brominations of both (1) and (2)were initially attempted (see

SI, Section S3) on bulk microcrystalline powder samples, with
the materials suspended in CHCl3, exposed to bromine, and left
to stand in the dark for 48 h. After workup, the extent of chemical
transformation in the brominated materials, (1-Br2) and (2-Br2),
was analyzed by a number of techniques, which are detailed
below for the Zr-MOF (1-Br2) but also replicated for the Hf
analogue (2-Br2) (see SI). Powder X-ray diffraction (PXRD; see
SI, Section S4) shows that (1) remains crystalline after
postsynthetic bromination, with a small shift of the peaks of
(1-Br2) toward higher 2θ angles when compared with (1),
associated with an overall decrease in size of the unit cell.
From the thermogravimetric analysis (TGA) profiles (Figure

2a), excluding initial solvent loss from the MOF pores (<200

°C), it can be seen that (1) exhibits typical thermal behavior for
Zr-MOFs, with the large mass loss around 500 °C attributed to
combustion of the ligand.6d However, (1-Br2) displays a two-step
profile, with the initial mass loss between 350 and 500 °C
accounting for 29.6% of the mass of the desolvated material; the
bromine content of fully desolvated (1-Br2) is calculated to be
29.8%. This very close correlation, alongside elemental analysis

data (measured Br content 26.2%), suggests quantitative
bromination of (1) has been achieved, and although this
apparent debromination step occurs around 350 °C, the
underlying thermal stability appears to be unaltered. N2
adsorption isotherms collected at 77 K (Figure 2b) show a
dramatic decrease in surface area, from 3280 m2 g−1 for (1), to
2000 m2 g−1 for (1-Br2). The higher mass of (1-Br2) cannot fully
account for this decrease in gravimetric surface area and, in
concert with calculated pore size distributions showing a
reduction in the major pore diameter from 12.5 to 11 Å (see
SI, Section S6), suggests that the transformation from alkyne to
dibromoalkene units has been successful, resulting in a
mechanical contraction of the ligand and thus the MOF.
Comparison of the Raman spectra of (1) with (1-Br2) (Figure

3a) provides striking evidence that quantitative bromination has

occurred, due to the complete disappearance of the stretch at
2225 cm−1, which is typical of alkyne units conjugated with
aromatic rings. The appearance of a peak at 1640 cm−1 in (1-Br2)
corresponds to the stretching of the newly formed dibromoal-
kene moiety.14

The presence of two doublets in the 1H NMR spectra (see SI,
Section S8) of acid-digested samples of both (1) and (1-Br2),
whose splitting and chemical shifts were observed to change,
indicates the presence of a different, single species in each. While
this suggests a quantitative transformation, the presence of only
aromatic protons provides limited information. The presence of

Figure 2. Transformation of (1) to (1-Br2) is evident from (a) their
TGA profiles, with a 29.6% mass loss in (1-Br2) correlating very closely
to its theoretical Br content, and (b) the decrease in N2 uptake at 77 K by
(1-Br2) as the MOF contracts (adsorption, filled circles; desorption,
empty circles). Analogous results are observed for the transformation of
(2) to (2-Br2) (see SI, Sections S5 and S6).

Figure 3. Spectroscopic evidence of the transformation of (1) to (1-Br2)
is found in (a) the Raman spectra of both, showing loss of an alkyne
stretch at 2225 cm−1 and appearance of an alkene stretch at 1640 cm−1,
and (b) 13C NMR spectra of digested MOF samples (DMSO-d6/
D2SO4, 293 K), which exhibit characteristic shifts of resonances
associated with the functional groups. Analogous results are observed for
the transformation of (2) to (2-Br2) (see SI, Sections S7 and S8).
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only six resonances in the 13C NMR spectrum of digested (1-
Br2) (Figure 3b) is indicative that only one of the possible
isomers of the dibromoalkene (cis and trans) has been obtained,
i.e., the postsynthetic modification has occurred stereoselectively.
Due to the geometrical constraints imposed on the edb2− ligand
bound within (1), we hypothesize that sole generation of the
trans-dibromoalkene occurs, yet NMR spectroscopic character-
ization is complicated by conflicting literature reports.21 The
solution phase bromination of dimethyl 4,4′-ethynylenediben-
zoate (edb-Me2) under similar reaction conditions results in the
formation of two geometrical isomers, cis- and trans-edb-Me2-
Br2, as evident from both 1H and 13C NMR spectra (see SI,
Section S9), which show resonances for both isomers. There has
been some conflicting evidence in the literature concerning the
13C NMR chemical shifts of the resonances of dibromostilbene
alkenyl carbon atoms; our results unambiguously show that the
signals observed around δ = 118 ppm correspond to the trans
isomer, while those around δ = 124 ppm correspond to the cis
species. The geometrical constraints imposed within the MOFs
ensure stereoselective addition, resulting exclusively in the trans-
bromoalkene product.22

Crystals of (1) and (2)were suspended in CHCl3 and exposed
to an excess of Br2 for 4 days, before washing and resolvating in
DMF. The brominated MOFs (1-Br2) and (2-Br2) were
examined by single crystal X-ray diffraction (Figure 4a) and
found to retain the same Fm3 ̅m space group as their parent
structures, with bromination resulting in a shortening of the unit
cell edges from 30.2386(4) Å for (1) to 29.861(2) Å for (1-Br2).
This mechanical contraction of the frameworks, a 3.7% decrease
in unit cell volume, occurs without damaging the crystal and is a
result of the edb2− linker shortening on bromination to edb-
Br2

2−, which is evident when examining other crystallographic
parameters such as solvent accessible void space (see SI, Section
S10). Comparison of the calculated PXRD pattern from the
crystal structure of (1-Br2) with the experimental pattern of the

bulk brominated material (Figure 4b) confirms that the
stereoselective bromination proceeds quantitatively and produ-
ces phase purematerial. The bent edb-Br2

2− linkers lie disordered
along the [110] mirror plane and are geometrically frustrated as a
result of the nonlinearity that originates from the sp2 carbon
atoms at their centers. The ligands adopt two different positions
(Figure 4c), each of which has its own end-to-end orientational
disorder (Figure 4d). Despite the disorder, it is clear that the
bromination has proceeded stereoselectively to yield only trans-
edb-Br2

2−; similar end-to-end disorder has previously been
observed in the crystal structure of trans-dibromo-stilbene
(Figure 4e).22a The crystal structure of (2-Br2) is isostructural,
with an unambiguously trans-edb-Br2 linker and similar
mechanical contraction (see SI, Section S10).
In conclusion, we have demonstrated a rare example of

postsynthetic modification of an integral component of a MOF
linker in a SCSC manner, stereoselectively and quantitatively
brominating internal alkynes in the Zr- and Hf-MOFs (1) and
(2). The process has been extensively characterized both
spectroscopically and structurally, as bromination results in
both the chemical and mechanical transformation of the MOFs.
This simple method of changing the hybridization of carbon
atoms in MOF linkers should allow facile tuning of mechanical
properties of MOFs through chemical introduction of flexibility.
We are currently investigating further reactions across
unsaturated bonds to introduce a variety of pore functionalities
and geometries, while halogenation of alkynes may prove a useful
strategy for irreversible chemisorptive capture of radioactive I2
from nuclear energy processing and/or accidents.23 Indeed, a
sample of (1) exposed to I2 vapors for 1 week in a proof-of-
concept experiment showed 61% iodination of its edb2− linkers,
corresponding to 41% w/w irreversible trapping of I2 (see SI,
Section S11).

Figure 4. (a) Packing diagram of (1-Br2) derived from its crystal structure, with disorder omitted for clarity. (b) Stacked PXRD patterns show the bulk
brominated sample of (1-Br2) closely matches the pattern calculated from the crystal structure, indicating quantitative bromination and excellent phase
purity. (c) Positional disorder in the trans-edb-Br2

2− ligand is evident in (1-Br2). (d) The end-to-end disorder in the ligand is strikingly similar to that
seen in (e) the crystal structure of trans-dibromostilbene (CCDC deposition LAGKUZ).22a Analogous results are derived from the crystal structure of
(2-Br2) (see SI, Section S10).
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